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EXECUTIVE SUMMARY 
This project explores the possibilities of pairing an autonomous underwater vehicle (AUV) with 

a deep-learning computer vision model for marine debris mapping. A cost effective, 3D-printed 

AUV with a motorized ballast system was designed to collect underwater footage continuously 

at various depths for several weeks. A simulated underwater environment using hardware-in-

the-loop (HIL) procedures was used to test and evaluate the AUV. A trash detection machine 

learning model was developed to analyze the footage for underwater litter. To assess the 

accuracy and capabilities of the trash detection model, footage from various underwater 

vehicles was compiled and run through the model, yielding five areas of highly concentrated 

ocean debris at depths of 500-800 meters below the surface. This study highlights how many 

pieces of marine debris - undetectable by satellite data – can be mapped and categorized with 

the proposed AUV and trash detection model.  

KEYWORDS: Autonomous underwater vehicle; Hardware-in-the-loop; Tracking and mapping; 

Marine debris; Real-time object detector; Machine learning. 
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1. INTRODUCTION 
The use of plastics in the past 65 years has significantly outpaced the use of all other materials. 

Of the 8.3 billion metric tons of plastic ever produced, only 2500 metric tons are currently in 

use (Geyer et al., 2017). These plastics are the most dominant type of litter found in our oceans 

and contribute to the 244,000 metric tons of marine debris (Parker, 2022). 

This issue has already caused substantial ecological and economic problems. An estimated 845 

million people are at risk of iron, zinc, or vitamin A deficiency because of declining fish 

populations (Golden et al., 2016) and global ecosystem delivery systems are projected to lose 

$500-$2500 billion in value of benefits (Beaumont et al., 2019) because of global plastic 

accumulations.  

Currently, quantitative assessments of marine litter are primarily done through satellite 

imagery. For example, the MARLISAT project combines orbital imagery and machine learning 

algorithms to detect plastic along beaches and oceans (Petersen, 2022). Although this method 

has given a clear view on concentrations of surface-level plastic, about 40% of plastics in the 

ocean are less dense than seawater (Andrady, 2011), leaving them undetectable through 

satellite imagery.  

One of the largest garbage patches in the world, the Great Pacific Garbage Patch, was mapped 

using a fleet of 18 vessels and 642 surface nets (Lebreton et al., 2018). This method created a 

comprehensive understanding of the largest garbage patch in the world but required vast 

resources and manpower for a single assessment. The ceaseless movement of ocean debris 

requires continuous observation, but the use of large resources for one measurement is not 

sustainable. Therefore, advanced marine debris detection systems with autonomous 

capabilities are needed for the effective mapping of marine debris.  

The purpose of this study is to design and develop an autonomous underwater vehicle (AUV) 

and a trash detection machine learning (ML) model to assist in marine litter quantification. The 

AUV is capable of surveying and capturing footage of different marine environments at various 

depths for long distances, while gathering other seminal metrics such as temperature and 

salinity data. Unlike satellites, AUVs allow for metrics to be collected at various depths, and 

contrary to current surface net and trawl quantification methods, AUVs are cheap and require 

very little manpower. The ML model analyzes the post-deployment footage from the AUV for 

litter, which is used to build a comprehensive map of marine debris.  

Using this method, the performance and capabilities of the engineered AUV are evaluated and 

open-sourced underwater video datasets are analyzed to create a model of ocean litter off the 

coast of Kamaishi, Japan. Using the ML model, the possibility of using AUVs to collect data on 

the scope of marine debris was assessed. 
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2. METHODOLOGY 

2.1 Design of AUV 
The AUV is modeled after an underwater glider - a robotic vehicle suited for data collection in 

remote locations at a low cost. Underwater gliders do not have propellers or engines; they 

utilize changes in buoyancy to move up and down which creates lift to propel the vehicle 

forward. This method allows for the glider to operate for days, weeks, or even months 

autonomously before being recovered for data.  

The AUV was first designed in computer-aided design (CAD), and 3D-printed. Each component 

of the AUV was a separate, modular design, which was then assembled onto a steel rod 

backbone. The entire assembly then slid into a 102 mm×914 mm clear PVC tube and was sealed 

with an O-ring endcap. Each of the 3D-printed modules was manufactured in polylactic acid 

(PLA), with high infill to increase the density of the vehicle. Since the inner printed parts are 

independent from the outer PVC tube, none of the inner components required water proofing. 

By assembling the AUV primarily with 3D printed components, the design allowed for 

modularity and repeatable manufacturing of parts – all at a very low cost.  

The AUV was assembled using the 3D printed parts and had a width of 10.16 centimeters, a 

wingspan of 0.72 meters, and a length of 1.08 meters. Initially, the mass of the vehicle was 

insufficient to sink, thus 3.63 kg of copper plated lead weights were added to the interior of the 

AUV to make it neutrally buoyant, giving it a final mass of 6.63 kg. 

The AUV control board, the circuit board that operates the vehicle, was first designed, and 

developed in electronic computer-aided design, then outsourced for fabrication by JLCPCB. 

Once the bare printed circuit board (PCB) was fabricated, individual integrated circuits were 

soldered using reflow. The microcontroller used on the control board was the Teensy® 4.1 

(Teensy 4.1, 2020), featuring the Arm® Cortex-M7 (Cortex-M7, 2014) at 528 MHz and 1024 KB 

of memory. The software that operated the control board was developed in C++ and a 

complementary graphical user interface (GUI) was developed in Typescript. 

2.2 Trash Detection Model  
The trash detection model was built on YOLOv5, an open-source ML framework. The dataset 

used to train the neural network was the Trash ICRA-19 dataset (Fulton, 2019), which contained 

5700 annotated images of underwater trash. Training was performed on a Google Colab server 

with a NVIDIA Tesla T4 with 16GB of memory and 2560 CUDA cores. A total of four different 

neural networks were trained and evaluated to find the best-suited model for trash detection. 

Table 1 summarizes the four different models. Once the models were trained, validation and 

deployment of the models was performed on a local server featuring the NVIDIA 1650Ti with 

4GB of memory and 896 CUDA cores. 
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Table 1. The four models trained for trash detection. The model that showed the highest 

accuracy is then used for trash detection. 

Model Parameters (millions) FLOPs @ 640 pixels (billions) 

YOLOv5n 1.9 4.5 

YOLOv5s 7.2 16.5 

YOLOv5m 46.5 49.0 

YOLOV5l 86.7 109.1 

3. RESULTS AND DISCUSSION 

3.1 Component Design for AUV 
The AUV consists of four key components: a ballast tank to control buoyancy, a microcontroller 

system to control and operate the vehicle, aluminum wings to push the vehicle forward when 

rising and sinking, and a camera module to collect video footage of the surroundings (Figure 1). 

 

Figure 1. The AUV with its key components. 

3.1.1 Ballast System 

The buoyant force, 𝐹𝐵, exerted on the vehicle is equivalent to the weight of the volume of 

water displaced by the vehicle. If the buoyant force is greater than the weight of the vehicle, 

𝐹𝑊, the vehicle floats. If the weight of the vehicle is greater than the buoyant force, the vehicle 

sinks. The AUV controls its weight by using a ballast tank. By pulling in water from its 

surroundings, the AUV increases in weight and can sink, and by pushing that water out, the AUV 

can then float. 



6 
 

For the AUV in this study, the ballast system utilizes a 550 mL syringe with a plunger driven by a 

stepper motor (Figure 2C). A threaded rod is connected to the stepper motor (Figure 2A) which 

pushes the syringe plunger in and out. The high accuracy of the stepper motor allows for fine 

tune adjustments to the amount of water in the tank to be controlled with very low power 

consumption. However, unlike servo motors, stepper motors provide no positional feedback, 

thus a limit switch is added to the end of the plunger’s range of motion. By pulling the plunger 

until the limit switch is pushed (Figure 2B), the position of the plunger can be determined. The 

ballast assembly was able to pull in 450 mL of the 550 mL capacity, allowing for an additional 

0.450 kg of water to be added to the AUV. 

 

Figure 2. The AUV’s ballast system. 

To test the ballast system, the AUV was placed in a tub of water and was programmed to 

continuously fill and empty the ballast tank to sink and float. Initially, the AUV was too buoyant 

to sink, so an additional 308 g of lead was added to the rear of the AUV, for a final mass of 

6.629 kg. Lead was chosen due to its high density and relatively low cost. The lead was copper 

plated to reduce the environmental and safety hazards associated with it. After the addition of 

the extra weight, the AUV was able to control its buoyancy with the ballast system and 

repeatedly float and sink (Figure 3). 
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Figure 3. Field test of the AUV’s ballast system. 

3.1.2 AUV Control System 

To read sensor data, control and navigate the AUV, and perform telemetry, a custom printed 

circuit board was designed and assembled (Figure 1B). At its core, the control system has a 528 

MHz microcontroller unit that runs the AUV control software and controls all aspects of the 

vehicle. 

To calculate the orientation and relative speed and position of the vehicle, the control board 

features an accelerometer, gyroscope, and magnetometer.  

The board also includes a total dissolved solids (TDS) sensor to calculate external solute 

concentrations. The TDS sensor calculates the concentration of solutes within the AUV’s 

environment by measuring the current across two electrodes providing 3 V AC power at 50 Hz. 

The excitation source is alternating instead of direct current to prevent the sensor from 

polarization by preventing the buildup of charged particles on the electrodes. Since the 

conductivity of water increases as temperature increases, a thermistor is installed next to the 

TDS probe to calculate a more accurate reading.  

To collect data needed for marine litter mapping, a GPS and external pressure sensor are all 

connected to the board. These two sensors allow for the location and depth of any detected 

litter to be identified. All data collected from these sensors are then logged onto a microSD 
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card. The ballast tank is controlled through a stepper motor, which the control system operates 

using a stepper motor driver.   

Since most radio frequencies greater than 1 MHz do not work at distances greater than 10 

meters underwater (Qureshi, 2016), the control board allows for wired connections through the 

serial peripheral interface (SPI) or inter-integrated circuit (I2C) protocols. Although not 

implemented, connections to external modules on the surface (using tethered buoys) would 

allow for telemetry and GPS data to be transmitted and received. The SPI and I2C interfaces 

also allow for other additional components to be added to the AUV framework, such as 

auxiliary sensors or cameras.  

 

Figure 4. The components of the control board (top) and the labeled ECAD model of the control 

board (bottom) 

3.1.3 Camera System 

Although the main control board allows for an external camera module to be connected, image 

processing and logging are very CPU and memory intensive operations, thus a separate module 

was added to collect footage of the AUV’s surroundings. The ESP32-S microcontroller with the 

OV2640 2-megapixel camera was chosen to collect footage of the AUV’s surroundings (Figure 
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1C). The 32-bit ESP32 microcontroller runs at 240 MHz and features 2 cores and 520 KB of RAM, 

which is sufficient to capture video footage continuously and save to a microSD card. The small 

size of the module (27mm × 49mm) allows for multiple camera units to be setup within the 

AUV, which can provide multiple camera angles. 

3.1.4 AUV Control Software 

Although the control system and camera system provided the hardware to operate the AUV, 

respective software had to be developed to run the control system. The software controls 

everything from the stepper motors to drive the ballast tank to the data collection and logging. 

The AUV control software is written in C++ and had two key aspects: sensor data collection and 

data logging/telemetry. 

3.1.4.1 Sensor Data Collection 

The AUV had seven key sensors that collected data about the state of the vehicle. The TDS 

sensor measures the number of solutes in the environment in conjunction with an external 

temperature and pressure sensor, while an accelerometer, gyroscope, magnetometer, and GPS 

were used to measure orientation and provide an estimate of the AUV’s position.  

To calculate the external solute concentration with the TDS sensor based on temperature, the 

temperature compensated reading, 𝜙𝑇  must be first calculated: 

                                                        𝜙𝑇 = (
𝐴𝑠∗𝑉𝑅𝐸𝐹

1023
) 1.0 + 0.02(𝑇 − 25)                                              (1) 

where: 

• 𝐴 is the raw analog reading from the TDS sensor. 

• 𝑉𝑅𝐸𝐹 is the reference voltage of the microcontroller. 

• 𝑇 is the temperature in degrees Celsius measured by the thermistor. 

This is necessary because the conductivity increases as temperature increases. The solute 

concentration can then be calculated by 

                                 𝑆𝑇 = 0.5 ∗ [133.42 ∗ 𝜙𝑇
3 − 255.86 ∗ 𝜙𝑇

2 + 857.39 ∗ 𝜙𝑇]                            (2) 

where: 

• 𝑆𝑇 is the solute concentration in g/mL at temperature 𝑇 

Temperature readings from the thermistor not only help provide a more accurate TDS 

measurement but can also be used to measure rising ocean temperatures throughout multiple 

AUV deployments. The temperature is first calculated by measuring the resistance of the 

thermistor by calculating the voltage drop:  
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                                                  𝑅𝑇 = (𝑉𝑅𝐸𝐹 − 𝑉𝑡ℎ𝑒𝑟𝑚) ∗ 𝑅𝑘 ÷ 𝑉𝑡ℎ𝑒𝑟𝑚                                                  (3) 

where: 

• 𝑅𝑇 is the resistance of the thermistor in ohms at temperature 𝑇. 

• 𝑉𝑅𝐸𝐹 is the reference voltage of the microcontroller. 

• 𝑉𝑡ℎ𝑒𝑟𝑚 is the voltage measured across the resistor. 

• 𝑅𝑘 is the known resistance in the voltage divider. 

The temperature can then be calculated with the Steinhart-Hart equation as: 

                                                𝑇 = 𝐴𝑐 + 𝐵𝑐 ln(𝑅𝑇) + 𝐶𝑐[ln 𝑅𝑇]3 − 273.15                                         (4) 

where: 

• 𝐴𝑐, 𝐵𝑐, and 𝐶𝑐 are the Steinhart-Hart coefficients varying on the type of thermistor used. 

• 𝑇 is the temperature measured in degrees Celsius. 

External pressure readings provide accurate measurements of the depth of the vehicle. The 

pressure transducer outputs a simple analog output directly proportional to the pressure of the 

environment. The accelerometer, gyroscope, and magnetometer, (collectively referred to as 

the inertial measurement unit or IMU here) are each separate devices that provide readings to 

the microcontroller through the I2C communication protocol. For positioning, the AUV utilizes 

GPS data for absolute positioning and the IMU for localization. The GPS module provides 

horizontal positioning up to 2.5 m in accuracy at 10Hz while the IMU provides accurate 

horizontal positioning through dead reckoning. Using GPS, pressure measurements, and the 

IMU, the position of the AUV in all three dimensions can be estimated. The IMU is also used to 

calculate the orientation of the vehicle using the Madgwick algorithm (Madgwick, 2010). The 

Madgwick algorithm fuses accelerometer, gyroscope, and magnetometer readings to provide a 

low-drift estimation of the AUV’s orientation. 

3.1.4.2 Data logging and Telemetry 

During deployment, data is serialized onto a microSD card in the JSON format. A converter was 

also developed in C++ to convert the JSON data into more easily readable formats, such as CSV. 

Data is transmitted to an external GUI through the universal asynchronous receiver-transmitter 

(UART) protocol. The GUI is built in Typescript-React and provides live data feeds from the 

sensors and allowed for control over the AUV’s ballast system. The GUI allows for extensive 

control of the vehicle’s ballast system and provided critical information such as vehicle 

orientation, external pressure, and battery voltage. Telemetry could be sent wirelessly through 

a tethered buoy but is sent directly through a wire directly connected to the control board 

during AUV testing.  

3.2 Hardware-In-The-Loop 
After designing and assembling the AUV and its respective software, the platform required 

extensive testing to evaluate its effectiveness. Unfortunately, many garbage patches exist in the 
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middle of the ocean and the means of testing this application is geographically restricted. To 

overcome this challenge, a method called hardware-in-the-loop (HIL) was adopted to test the 

AUV. HIL testing simulates reality by feeding real signals through the platform while test and 

design iteration take place. HIL allows for comprehensive testing of complex systems through 

many of possible scenarios without spending time and money associated with real-world tests 

(NI, 2022).  

Data from the open-sourced Slocum glider from Teledyne Webb Research was fed through the 

software while simulating underwater conditions (Figure 5). The data from this dataset included 

1.139 megabytes of latitude, longitude, depth, pressure, temperature, and salinity data 

collected from May 25, 2018, to July 16, 2019. Although the AUV continuously read from the 

onboard sensors, the readings from the sensors were overridden with data from the dataset. 

While the data was fed through the system, the AUV performed its normal operations, such as 

ballast tank control, telemetry, sensor data reading and logging, and underwater footage 

collection. These tests evaluated the functionality of the sensors and mechanical aspects of the 

AUV, while also testing the abilities of the software and control board to operate the AUV. 

  

Figure 5. Salinity data from the HIL test in grams per liter (left) and the temperature data from 

the HIL test in degrees Celsius.  

3.3 Trash Detection Model 
The trash detection model locates and classifies litter in an image or video using a deep neural 

network. For each image or frame of a video, the model outputs a predicted bounding box 

surrounding the piece of litter. Once the AUV is recovered, the footage and sensor data are run 

through this model. If a piece of litter is detected, the model then extracts the respective depth 
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and GPS data, which can be used to build a comprehensive map of ocean litter. The trash 

detection model trained in this study only has one class – meaning that it can detect if there is 

trash or no trash within a certain image. Training was done on the Trash ICRA-19 Dataset 

(Fulton, 2019) which contained 5700 images of underwater trash, each of which were 

annotated with a ground truth bounding box which enclosed the litter within the image.  

3.3.1 Training 

Before the model could be deployed, it needed to first be trained on a large dataset. For 

training, four different convolutional neural networks (CNNs) were used: YOLOv5n, YOLOv5s, 

YOLOv5m, and YOLOv5l (Jocher, 2023). To evaluate the best model to use for trash detection, 

several metrics were measured throughout the model training. The model that exhibited the 

best metrics would be chosen as the final detection model. 

In machine learning, true positives, 𝑇𝑃, are predictions that the model made correctly. False 

positives, 𝐹𝑃, are outcomes where the model incorrectly predicted that trash was detected. 

False negatives, 𝐹𝑁, on the other hand, are instances where trash was present, but the model 

did not predict litter at that position.  

Using these metrics, the precision and recall of the model can be calculated. Precision is defined 

as: 

                                                                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                           (5) 

Precision gives the proportion of positive identifications that were correct. By contrast, recall 

gives the proportion of actual positives that were identified correctly, and is defined as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                              (6) 

For each of the images the model inferences, it returns a confidence score which shows the 

probability of trash being within the bounding box. If the confidence score is greater than the 

confidence threshold, a value set by the user, the object is classified as trash. Thus, the 

confidence threshold affects the ratio of true positives, false positives, and false negatives, and 

therefore causes a tradeoff between precision and recall. Typically, a high-precision model will 

have a lower recall and vice versa. Therefore, to evaluate the model, a different metric, called 

mean average precision, 𝑚𝐴𝑃, must be used. 𝑚𝐴𝑃 accounts for both precision, recall, and 

differing confidence thresholds giving an intuitive measure of the accuracy of a model. To 

calculate mean average precision, first, the average precision, 𝐴𝑃, for each class of the model is 

calculated. 𝐴𝑃 is defined as: 
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 ∫ 𝑝(𝑟)𝑑𝑟
1

0
                                                                          (7) 

where: 

• 𝑝(𝑟) is the precision and recall function, giving us the precision of the model at a 

specific recall, 𝑟 

Thus, a model that can detect 5 different categories (classes) will have 5 𝐴𝑃 values. To calculate 

the mean average precision, the mean of the 𝐴𝑃 values is calculated.  

                                                                  𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1                                                                   (8) 

where: 

• 𝐴𝑃𝑘  is the average precision of class k. 

• 𝑛 is the number of classes. 

Since the trash detection model only has one class, the mean average precision of the model is 

equivalent to the average precision. Although mean average precision gives an overall 

quantification of the performance of the model based on precision and recall, another metric, 

loss, is also needed to measure the accuracy of the bounding boxes produced by the model. 

Loss consists of three parts: classification loss, localization loss and objectness loss (Liu, 2016). 

Localization loss measures differences between the predicted and ground truth bounding box 

coordinates, while confidence loss measures the probability of object presence or absence 

within a predicted bounding box. Classification loss is a measure of the model’s ability to 

predict the correct class. However, since the trash detection model only has a single class, this 

metric is negligible. Localization loss, 𝐿, is defined as: 

    𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 + 𝑥𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)2]𝐵

𝑗=0 + 𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]𝐵
𝑗=0

𝑆2

𝑖=0
𝑆2

𝑖=0     (9) 

where: 

• 𝛾𝑐 is the scaling factor for localization loss. 

• 𝑆2 is the number of grid cells in the output feature map (the output of the convolutional 

layers). 

• 𝐵 is the number of bounding boxes predicted for every grid cell. 

• 𝕝𝑖𝑗
𝑜𝑏𝑗

 is the indicator variable that equals 0 unless the 𝑗-th bounding box in the 𝑖-th grid 

cell is responsible for detecting an object, in which case it equals 1. 

• 𝑥𝑖  and 𝑦𝑖 are the coordinates of the center of the predicted bounding box. 

• 𝑤𝑖 and ℎ𝑖  represent the width and height of the predicted bounding box, respectively. 

• 𝑥̂𝑖  and 𝑦̂𝑖 are the coordinates of the center of the ground-truth bounding box. 
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• 𝑤̂𝑖 and ℎ̂𝑖  represent the width and height of the ground-truth bounding box, 

respectively. 

If an object is detected within the box, the objectness loss 𝑂 is: 

                                                        ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − 𝐶̂𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0                                                          (10) 

If an object is not detected within the box, 𝑂 is: 

                                                  𝛾𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − 𝐶̂𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0                                                (11) 

where: 

• 𝑆2 is the number of grid cells in the output feature map (the output of the convolutional 

layers). 

• 𝐵 is the number of bounding boxes predicted for every grid cell. 

• 𝕝𝑖𝑗
𝑜𝑏𝑗

 is the indicator variable that equals 0 unless the j-th bounding box in the i-th grid 

cell is responsible for detecting an object, in which case it equals 1. 

• 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is the complement to 𝕝𝑖𝑗
𝑜𝑏𝑗

. 

• 𝐶𝑖 is the predicted objectness score for the 𝑗-th bounding box in the 𝑖-th grid cell. 

• 𝐶̂𝑖 is the ground-truth objectness label for the 𝑗-th bounding box in the 𝑖-th grid cell. 

• 𝛾𝑛𝑜𝑜𝑏𝑗 is a scaling factor that controls the weight of the no object loss when detecting 

background. 

The final loss of the single class model is the sum of the localization and objectness loss defined 

as: 

𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 + 𝑥̂𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2]𝐵

𝑗=0 + 𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+𝐵
𝑗=0

𝑆2

𝑖=0
𝑆2

𝑖=0

(√ℎ𝑖 − √ℎ̂𝑖)

2

] + ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − 𝐶̂𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0 + 𝛾𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − 𝐶̂𝑖)2𝐵
𝑗=0

𝑆2

𝑖=0              (12) 

The loss function was calculated on the training images and on a separate validation dataset 

that was not used during training. By comparing the training loss with the validation loss, the 

model can be evaluated for overfitting. In general, if the validation loss is greater than the 

training loss, the model is overfitting because it has learned to predict only the training data too 

closely. 
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In short, mean average precision measures the ability of a ML model to detect objects and loss 

measures the model’s ability to minimize the difference between ground-truth and its 

predictions. Figure 6 and Table 2 show the different metrics of each of the four CNNs that were 

trained throughout the 200 epochs for which the model was trained.  The YOLOv5l model 

exhibited the highest mean average precision and the lowest training and validation loss, while 

not showing significant signs of overfitting.  

 

Table 2. Best and average mean average precision, training loss, and validation loss for each 

neural network model. The percent difference defines the difference between the best training 

and validation loss metric. 

 YOLOv5s YOLOv5n YOLOv5m YOLOv5l 

mAP (best) 0.706 0.720 0.759 0.774 

mAP (average) 0.548 0.554 0.612 0.616 

Training loss (best) 0.105 0.105 0.105 0.105 

Training loss (average) 0.059 0.059 0.056 0.056 

Validation loss (best) 0.105 0.105 0.105 0.105 

Validation loss 
(average) 

0.059 0.059 0.056 0.056 

Percent difference 
(best training vs. best 
validation) 

0.000 0.000 0.002 0.000 
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Figure 6. Mean average precision at intersection over union threshold 0.5 throughout the 200 

epochs each model was trained on (top). Training loss of each model throughout 200 epochs 

(middle), and the validation loss of each model throughout 200 epochs (bottom). As the model 

trains for more epochs, it slowly improves by increasing the mean average precision and 

decreasing the loss.  

 

3.3.2 Trash Detection Model Deployment 

Since the AUV was tested using hardware-in-the-loop, it produced no real footage to run 

through the trash detection model. To evaluate the abilities of the model, open-source footage 

was collected from the Japan Agency of Marine-Earth Science and Technology (JAMSTEC) 
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HYPER-DOLPHIN submersible. The model detected a total of 174,734 litter objects at depths of 

500-800 m below the surface. Objects were considered trash if the confidence score was 

greater than the confidence threshold, set at 0.4. Figure 7 shows the model inferencing a frame 

from the submersible and the detected objects from the model deployment.  

 

Figure 7. A: Location of the footage collected from the submersible off the coast of Kamaishi. B: 

Raw footage from the submersible. C: Inferenced image after being processed by the YOLOv5l 

trash detection model. D: Areas of debris detected by the model and the relative density of 

litter in each area represented by color. 

4. CONCLUSIONS 
This study shows an engineered AUV along with the training and deployment of a trash 

detection model. As shown by the HIL tests, the AUV can accurately read sensor data and 

process footage while navigating underwater, and the high precision of the computer vision 

model can seamlessly detect and analyze litter within underwater footage. The development of 

both a prototype AUV and novel trash detection computer model indicate that this system 

would be a viable method to quantify and map litter concentrations across our world’s seas.  
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The AUV demonstrated an ability to collect sensor data and operate in underwater conditions, 

while the trash detection model found 174,000 debris objects underwater at depths 

undetectable to satellites and surface net analysis.  

An exploration into replacements to the external parts of the AUV (the outer shell of the vehicle 

in contact with the environment) could yield better materials to handle salty ocean conditions 

and the use of more durable plastics for 3D printed parts could give the vehicle a more robust 

design. However, the biggest improvement is for more testing and evaluation to be done on the 

vehicle. Further tests in local bodies of water or even in the ocean could yield important flaws 

within the vehicle design. Furthermore, I hope to implement usage of the accelerometer 

onboard the AUV to track the forces of ocean currents to track the movement of debris, rather 

than just the position.   

Currently, the trash detection model has only one classification level – whether trash is in the 

image or not. By using a more comprehensive dataset during training, the model would be able 

to classify different types of debris (e.g., plastic, metal, glass). Furthermore, by tuning 

hyperparameters within the existing model (number of epochs, learning rate, and model 

architecture), the mean average precision and loss of the model can be improved.  
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APPENDIX A 
Symbol Description 

AUV Autonomous Underwater Vehicle 

CAD Computer-aided-design 

CNN Convolutional Neural Network 

ECAD Electrical computer-aided-design 

GUI Graphical user interface 

HITL Hardware-in-the-loop 

I2C Inter-integrated circuit 

IMU Inertial measurement unit 

ML Machine Learning 

PLA Polylactic acid 

PVC Polyvinyl chloride 

SPI Serial peripheral interface 

TDS Total dissolved solids 

UART Universal asynchronous receiver-transmitter 

𝐴𝑐 Steinhart-Hart coefficient 

𝐴𝑃 Average precision 

𝐴𝑃𝑘  Average precision of class 𝑘 

𝐴𝑠 Analog reading  

𝐵 Number of bounding boxes predicted for every grid cell 

𝐵𝑐 Steinhart-Hart coefficient 

𝐶𝑐 Steinhart-Hart coefficient 

𝐶𝑖 Predicted objectness score for the 𝑗-th bounding box in the 𝑖-th grid cell 

𝐶̂𝑖 Ground-truth objectness score for the 𝑗-th bounding box in the 𝑖-th grid 
cell 

𝐹𝐵 Buoyant force 

𝐹𝑁 False negative 

𝐹𝑃 False positive 

𝐹𝑊 Weight force 

ℎ𝑖  Height of the predicted bounding box 

ℎ̂𝑖  Height of the ground-truth bounding box 

𝕝𝑖𝑗
𝑜𝑏𝑗

 Indicator variable that equals 0 unless the 𝑗-th bounding box in the 𝑖-th 
grid is responsible for detecting an object, in which case it equals 1 

𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 Complement to 𝕝𝑖𝑗
𝑜𝑏𝑗

 

𝑚𝐴𝑃 Mean average precision 

𝑛 Number of classes 

𝑝(𝑟) Precision value at recall level 𝑟 

𝑅𝑘 Known resistance in the voltage divider 

𝑅𝑇 Resistance at temperature 𝑇 

𝑆𝑇 Solute concentration in g/mL at temperature 𝑇 

𝑆2 Number of grid cells in the output feature map 
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𝑇 Temperature reading in degrees Celsius 

𝑇𝑃 True Positive 

𝑉𝑅𝐸𝐹 Microcontroller reference voltage 

𝑉𝑡ℎ𝑒𝑟𝑚 Voltage measured across the thermistor 

𝑤𝑖 Width of the predicted bounding box 

𝑤̂𝑖 Width of the ground-truth bounding box 

𝑥𝑖  X coordinate to the center of the predicted bounding box 

𝑥̂𝑖  X coordinate to the center of the ground-truth bounding box 

𝑦𝑖 Y coordinate to the center of the predicted bounding box 

𝑦̂𝑖 Y coordinate to the center of the ground-truth bounding box 

𝜙𝑇  Temperature compensated TDS reading at temperature 𝑇 

𝛾𝑐 Scaling factor for localization loss 

𝛾𝑛𝑜𝑜𝑏𝑗 Scaling factor that controls the weight of the no-object loss 
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